
Supplementary Material: Importance-Based Ray Strategies
for Dynamic Diffuse Global Illumination
ZIHAO LIU, Huawei Technologies Canada Co., Ltd., Canada
JING HUANG, Huawei Technologies Canada Co., Ltd., Canada
ALLAN ROCHA, Huawei Technologies Canada Co., Ltd., Canada
JIM MALMROS, Huawei Technologies Canada Co., Ltd., Canada
JERRY ZHANG, Huawei Technologies Canada Co., Ltd., Canada

In this document, we provide algorithms, implementation details, cost estimation, and proofs for other aspects
of our IS-DDGI approach not covered in the main paper.

1 Algorithms
1.1 Random Ray Orientation
The Algorithm 1 presents how we generate ray samples per 𝑑𝑠𝑖 𝑗 of a probe. 𝑛𝑜𝑖𝑠𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 samples
a 2D random value with techniques in [1, 3–5].

Algorithm 1 Random Ray Orientation
1: Input
2: 𝑡 the frame number
3: 𝑑𝑠𝑖 𝑗 the jth direction set of the ith probe
4: 𝑛𝑜𝑖𝑠𝑒𝑡𝑒𝑥 a noise texture with values in [0, 1]2.
5: Output
6: A 3 dimensional vector in the solid angle of 𝑑𝑠𝑖 𝑗 .
7: 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← 𝑛𝑜𝑖𝑠𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑖, 𝑗, 𝑡, 𝑛𝑜𝑖𝑠𝑒𝑡𝑒𝑥) .𝑥𝑦 ⊲ generate a random value ∈ [0, 1]2 for 𝑑𝑠𝑖 𝑗 .
8: 𝑂𝑁𝑉 ← 𝐸𝑛𝑐𝑜𝑑𝑒 (𝑜 𝑓 𝑓 𝑠𝑒𝑡,𝑑𝑠𝑖 𝑗) ⊲ generate octahedral normal vector ∈ [−1, 1]2 for a probe.
9: return 𝑂𝑐𝑡𝐷𝑒𝑐𝑜𝑑𝑒 (𝑂𝑁𝑉) ⊲ convert to a 3D vector with octahedral mapping [2].

1.2 Probe State Updates
Algorithm 2 describes the method to compute probe states by iterating through all valid ray samples
on a probe 𝑟 ∈ Ω𝑖 . Note that because each 𝑑𝑠𝑖 𝑗 contains a variable number of valid ray samples, we
read from 𝑟𝑎𝑦𝐻𝑖𝑡𝐼𝑛𝑓 𝑜𝑡𝑒𝑥 to get the actual number of valid samples to compute probe states.
1.3 Irradiance and Visibility Integration
Algorithm 3 describes how IS-DDGI utilizes 𝑟𝑎𝑦𝐻𝑖𝑡𝐼𝑛𝑓 𝑜𝑡𝑒𝑥 to iterate through all valid ray samples
𝑟 ∈ Ω𝑖 to integrate irradiance and visibility values.
2 Implementation
2.1 Uniform Rays

Uniform Ray Allocation Our ray allocation shader computes ray allocation information per 𝑑𝑠𝑖 𝑗
in the texture. Each probe is assigned a 16 pixels by 16 pixels tile, which is mapped to probe’s
sphere with octahedral mapping [2]. The coordinate of 𝑑𝑠𝑖 𝑗 in this tile is (𝑗 mod 16, 𝑗/16).
The predefined uniform ray allocation pattern (Figure 1, texels marked 0) is implemented by

creating consecutive ray allocation cells within each row of the ray allocation tile. The number of

Authors’ addresses: Zihao Liu, zihaol1@alumni.cmu.edu, Huawei Technologies Canada Co., Ltd., Canada; Jing Huang,
jing@cs.toronto.edu, Huawei Technologies Canada Co., Ltd., Canada; Allan Rocha, rocha.allanc@gmail.com, Huawei
Technologies Canada Co., Ltd., Canada; Jim Malmros, jim.robert.malmros@huawei.com, Huawei Technologies Canada Co.,
Ltd., Canada; Jerry Zhang, jerryzhang0101@gmail.com, Huawei Technologies Canada Co., Ltd., Canada.

I3D 2023 Z. Liu et al.

Algorithm 2 Update Probe State
1: Input
2: 𝑖 the ith probe.
3: 𝑟𝑎𝑦𝐻𝑖𝑡𝐼𝑛𝑓 𝑜𝑡𝑒𝑥 ray-hit information computed with equation 14, 16, and 17.
4: 𝐻𝑖𝑡𝑆𝑎𝑚𝑝𝑙𝑒𝑡𝑒𝑥 ray-hit samples with dimension (|Ω𝑑𝑠

𝑖
| ∗ 𝑅𝐴𝑌𝑆𝐿𝐼𝑀𝐼𝑇 ,𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠) .

5: Output
6: 𝑃𝑟𝑜𝑏𝑒𝑆𝑡𝑎𝑡𝑒𝑡𝑒𝑥 The probe state texture with dimension 𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠 .
7: 𝑏𝑎𝑐𝑘𝐹𝑎𝑐𝑒𝐶𝑜𝑢𝑛𝑡 = 0
8: 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐹𝑟𝑜𝑛𝑡𝐹𝑎𝑐𝑒𝐷𝑖𝑠𝑡 = 𝑀𝐴𝑋_𝑃𝑂𝑆_𝑉𝐴𝐿𝑈𝐸
9: for 𝑗 = 0; 𝑗 < |Ω𝑑𝑠

𝑖
|; + + 𝑗 do

10: (𝑛𝑢𝑚𝑖 𝑗 , 𝑝𝑟𝑒 𝑓 𝑖𝑥𝑖 𝑗 , 𝑡𝑜𝑡𝑎𝑙𝑖) ← 𝑓 𝑒𝑡𝑐ℎ𝑅𝑎𝑦𝐻𝑖𝑡𝐼𝑛𝑓 𝑜 (𝑑𝑠𝑖 𝑗 , 𝑟𝑎𝑦𝐻𝑖𝑡𝐼𝑛𝑓 𝑜𝑡𝑒𝑥)
11: for 𝑘 ← [0, 𝑛𝑢𝑚𝑖 𝑗) do
12: 𝑟𝑎𝑦𝐼𝑛𝑑𝑒𝑥 ← 𝑗 ∗ 𝑅𝐴𝑌𝑆𝐿𝐼𝑀𝐼𝑇 + 𝑘
13: 𝑟𝑎𝑦𝐻𝑖𝑡𝐷𝑎𝑡𝑎 ← 𝑓 𝑒𝑡𝑐ℎ𝑅𝑎𝑦𝐻𝑖𝑡 (𝑖, 𝑟𝑎𝑦𝐼𝑛𝑑𝑒𝑥,𝐻𝑖𝑡𝑆𝑎𝑚𝑝𝑙𝑒𝑡𝑒𝑥)
14: if 𝑟𝑎𝑦𝐻𝑖𝑡𝐷𝑎𝑡𝑎.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 0 then
15: 𝑏𝑎𝑐𝑘𝐹𝑎𝑐𝑒𝐶𝑜𝑢𝑛𝑡 + +
16: end if
17: 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐹𝑟𝑜𝑛𝑡𝐹𝑎𝑐𝑒𝐷𝑖𝑠𝑡 =𝑚𝑖𝑛 (𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐹𝑟𝑜𝑛𝑡𝐹𝑎𝑐𝑒𝐷𝑖𝑠𝑡, 𝑟𝑎𝑦𝐻𝑖𝑡𝐷𝑎𝑡𝑎.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
18: end for
19: end for
20:
21: 𝑝𝑟𝑜𝑏𝑒𝐹𝑙𝑎𝑔 = 𝑂𝐹𝐹

22: if 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐹𝑟𝑜𝑛𝑡𝐹𝑎𝑐𝑒𝐷𝑖𝑠𝑡 < 𝑀𝐴𝑋_𝑃𝑂𝑆_𝑉𝐴𝐿𝑈𝐸 and 𝑏𝑎𝑐𝑘𝐹𝑎𝑐𝑒𝐶𝑜𝑢𝑛𝑡/𝑡𝑜𝑡𝑎𝑙𝑖 < 𝐵𝐴𝐶𝐾𝐹𝐴𝐶𝐸_𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷
then

23: 𝑝𝑟𝑜𝑏𝑒𝐹𝑙𝑎𝑔 = 𝑂𝑁

24: end if
25:
26: Save 𝑝𝑟𝑜𝑏𝑒𝐹𝑙𝑎𝑔 to coordinate 𝑖 of 𝑃𝑟𝑜𝑏𝑒𝑆𝑡𝑎𝑡𝑒𝑡𝑒𝑥 .

Fig. 1. This diagram shows an example uniform ray allocation for 32 uniform rays. Texels marked 0 are
allocated rays in frame 0; texels marked 1 are allocated rays in frame 1.

cells in each row is determined by the formula 𝑥𝑖
16 (if 𝑥𝑖 < 16, each cell covers 16

𝑥𝑖
consecutive rows);

in addition, each cell also has a number of consecutive texels 256
𝑥𝑖
. In every frame, only one texel of

every cell in a tile is allocated a ray.

Uniform Ray Rotation Our uniform ray rotation method is implemented by shifting one ray
allocated in each cell one texel to the right on the ray allocation tile in every frame, as shown in

2

Supplementary Material: Importance-Based Ray Strategies for Dynamic Diffuse Global Illumination I3D 2023

Algorithm 3 Irradiance and Visibility Integration
1: Input
2: 𝐵𝑆 The compute block size for a work group.
3: 𝑑𝑠𝑖 𝑗 The jth direction set of the ith probe.
4: 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑡𝑡𝑒𝑥 ray directions for integration with dimension (|Ω𝑑𝑠

𝑖
| ∗ 𝑅𝐴𝑌𝑆𝐿𝐼𝑀𝐼𝑇 ,𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠)

5: 𝑟𝑎𝑦𝐻𝑖𝑡𝐼𝑛𝑓 𝑜𝑡𝑒𝑥 ray-hit information computed with equation 14, 16, and 17.
6: 𝐻𝑖𝑡𝑆𝑎𝑚𝑝𝑙𝑒𝑡𝑒𝑥 ray-hit samples (e.g. color and hit distance) with dimension (|Ω𝑑𝑠

𝑖
| ∗ 𝑅𝐴𝑌𝑆𝐿𝐼𝑀𝐼𝑇 ,𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠) .

7: Output
8: 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒𝑡𝑒𝑥 The irradiance texture that stores 𝑖𝑟𝑟𝑖 𝑗 per 𝑑𝑠𝑖 𝑗 .
9: 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑡𝑒𝑥 The visibility texture that stores 𝑣𝑖𝑠𝑖 𝑗 per 𝑑𝑠𝑖 𝑗 .
10: ℎ𝑖𝑡𝑆ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚 ← [|Ω𝑑𝑠

𝑖
| ∗ 𝑅𝐴𝑌𝑆𝐿𝐼𝑀𝐼𝑇] ⊲ amortize texture look-ups among threads in one compute block.

11: 𝑑𝑖𝑟𝑆ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚 ← [|Ω𝑑𝑠
𝑖
| ∗ 𝑅𝐴𝑌𝑆𝐿𝐼𝑀𝐼𝑇]

12: for 𝑏𝑎𝑡𝑐ℎ𝐼𝑛𝑑𝑒𝑥 = 0; 𝑏𝑎𝑡𝑐ℎ𝐼𝑛𝑑𝑒𝑥 < |Ω𝑑𝑠
𝑖
|/𝐵𝑆 ; + + 𝑏𝑎𝑡𝑐ℎ𝐼𝑛𝑑𝑒𝑥 do

13: 𝑘 ← 𝑏𝑎𝑡𝑐ℎ𝐼𝑛𝑑𝑒𝑥 ∗ 𝐵𝑆 + 𝑙𝑜𝑐𝑎𝑙𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝐷
14: (𝑛𝑢𝑚𝑖𝑘 , 𝑝𝑟𝑒 𝑓 𝑖𝑥𝑖𝑘 , 𝑡𝑜𝑡𝑎𝑙𝑖) ← 𝑓 𝑒𝑡𝑐ℎ𝑅𝑎𝑦𝐻𝑖𝑡𝐼𝑛𝑓 𝑜 (𝑑𝑠𝑖𝑘 , 𝑟𝑎𝑦𝐻𝑖𝑡𝐼𝑛𝑓 𝑜𝑡𝑒𝑥)
15: ⊲ fetch ray-hit data computed using equation 14, 16, and 17.
16: for 𝑙 ← [0, 𝑛𝑢𝑚𝑖𝑘) do
17: 𝑟𝑎𝑦𝐼𝑛𝑑𝑒𝑥 ← 𝑘 ∗ 𝑅𝐴𝑌𝑆𝐿𝐼𝑀𝐼𝑇 + 𝑙 ⊲ fetch the lth ray sample of the kth direction set on the ith probe.
18: 𝑟𝑎𝑦𝐻𝑖𝑡𝐷𝑎𝑡𝑎 ← 𝑓 𝑒𝑡𝑐ℎ𝑅𝑎𝑦𝐻𝑖𝑡 (𝑖, 𝑟𝑎𝑦𝐼𝑛𝑑𝑒𝑥,𝐻𝑖𝑡𝑆𝑎𝑚𝑝𝑙𝑒𝑡𝑒𝑥)
19: 𝑟𝑎𝑦𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎 ← 𝑓 𝑒𝑡𝑐ℎ𝑅𝑎𝑦𝐷𝑖𝑟 (𝑖, 𝑟𝑎𝑦𝐼𝑛𝑑𝑒𝑥, 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑡𝑡𝑒𝑥)
20: ...
21: doWorkWithRayHitData(𝑟𝑎𝑦𝐻𝑖𝑡𝐷𝑎𝑡𝑎, 𝑟𝑎𝑦𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎)
22: ...
23: ℎ𝑖𝑡𝑆ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚[𝑝𝑟𝑒 𝑓 𝑖𝑥𝑖𝑘 + 𝑙] ← 𝑟𝑎𝑦𝐻𝑖𝑡𝐷𝑎𝑡𝑎

24: 𝑑𝑖𝑟𝑆ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚[𝑝𝑟𝑒 𝑓 𝑖𝑥𝑖𝑘 + 𝑙] ← 𝑟𝑎𝑦𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎

25: end for
26: end for
27: 𝑠𝑦𝑛𝑐_𝑡ℎ𝑟𝑒𝑎𝑑𝑠_𝑖𝑛_𝑏𝑙𝑜𝑐𝑘 ()
28: ⊲ synchronize threads in a compute block for loading data consecutively in shared memory.
29: 𝑖𝑟𝑟𝑖 𝑗 , 𝑣𝑖𝑠𝑖 𝑗 ← 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒 (ℎ𝑖𝑡𝑆ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚,𝑑𝑖𝑟𝑆ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚, 𝑡𝑜𝑡𝑎𝑙𝑖 , 𝑑𝑠𝑖 𝑗)
30: ⊲ perform integration for 𝑑𝑠𝑖 𝑗 using equation 2.
31: Save 𝑖𝑟𝑟𝑖 𝑗 to 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒𝑡𝑒𝑥 and 𝑣𝑖𝑠𝑖 𝑗 to 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑡𝑒𝑥 for 𝑑𝑠𝑖 𝑗 .

Figure 1. We wrap around the ray allocation for each cell to the starting texel of that cell in case
the shifting exceeds cell boundary. Note that this rotation method provides the property that every
256
𝑥𝑖

frames, all 𝑑𝑠𝑖 𝑗 ∈ Ω𝑑𝑠𝑖 are sampled once more.

Random Ray Shifting We implement random ray shifting by generating a random number using
probe index 𝑖 as seed value; this random number is then used to permute the predefined ray
allocation pattern differently for every probe. We generate this random number through either
GPU or blue-noise methods [1, 3–5].

Adaptive Uniform Ray Strategy Our method keeps track of the number of remaining frames a
probe would use 𝑥𝑡𝑖 for its uniform ray allocation. In addition, probe 𝑖 sees scene changes if and
only if

∑
𝑗∈ |Ω𝑑𝑠

𝑖
| 𝑛𝑢𝑚𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑅𝑎𝑦𝑠𝑖 𝑗 ≠ 0.

3 Cost Evaluation

We derive formulas for computing additional memory cost of using our IS-DDGI methods in terms
of the number of probes, 𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠 , and the number of direction sets on the probe, |Ω𝑑𝑠𝑖 |, in table
1.

3

I3D 2023 Z. Liu et al.

Table 1. Additional Memory Storage Costs

Textures One-Ray (bytes) Multi-Rays (bytes)
Ray Allocation 1024 ∗ 𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠 1024 ∗ 𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠

Adaptive Uniform Ray 2 ∗ 𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠 2 ∗ 𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠

Ray-Hit Information - 4 ∗ |Ω𝑑𝑠𝑖 | ∗ 𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠

Ray Tracing Directions (−4) ∗ |Ω𝑑𝑠𝑖 | ∗ 𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠 (−4) ∗ |Ω𝑑𝑠𝑖 | ∗ 𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠

Ray Integration Directions 4 ∗ |Ω𝑑𝑠𝑖 | ∗ 𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠 16 ∗ |Ω𝑑𝑠𝑖 | ∗ 𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠

Ray Hit Samples - 24 ∗ |Ω𝑑𝑠𝑖 | ∗ 𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠

Total 1026 ∗ 𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠 1026 ∗ 𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠 + 40 ∗ |Ω𝑑𝑠𝑖 | ∗ 𝑛𝑢𝑚𝑃𝑟𝑜𝑏𝑒𝑠

4 Proofs

4.1 Deriving the Expectation of Sum of Dot Products over the Hemisphere

As samples are uniformly distributed on the hemisphere, 𝐻𝑖 𝑗 with normal ®𝑑𝑠𝑖 𝑗 , 𝑝 (𝜔) = 1
2𝜋 where

𝜔 ∈ 𝐻𝑖 𝑗 , we write:

𝐸 [
∑︁
𝑟 ∈Ω𝑖

⟨𝑑𝑠𝑖 𝑗 , 𝑟 ⟩+] = 𝐸 [
∑︁

𝑟 ∈Ω𝐻𝑖 𝑗

⟨𝑑𝑠𝑖 𝑗 , 𝑟 ⟩+ +
∑︁

𝑟∉Ω𝐻𝑖 𝑗

⟨𝑑𝑠𝑖 𝑗 , 𝑟 ⟩+]

= 𝐸 [
∑︁

𝑟 ∈Ω𝐻𝑖 𝑗

⟨ ˆ𝑑𝑠𝑖 𝑗 , 𝑟 ⟩ + 0]

= 𝐸 [
∑︁

𝑟 ∈Ω𝐻𝑖 𝑗

⟨ ˆ𝑑𝑠𝑖 𝑗 , 𝑟 ⟩]

=
∑︁

𝑟 ∈Ω𝐻𝑖 𝑗

𝐸 [⟨ ˆ𝑑𝑠𝑖 𝑗 , 𝑟 ⟩]

=
∑︁

𝑟 ∈Ω𝐻𝑖 𝑗

(
∫
𝐻𝑖 𝑗

𝑝 (𝜔) ∗ ⟨ ˆ𝑑𝑠𝑖 𝑗 , 𝜔⟩𝑑𝜔)

=
∑︁

𝑟 ∈Ω𝐻𝑖 𝑗

(1
2𝜋

∫
𝐻𝑖 𝑗

⟨ ˆ𝑑𝑠𝑖 𝑗 , 𝜔⟩𝑑𝜔)

=
∑︁

𝑟 ∈Ω𝐻𝑖 𝑗

(1
2𝜋

𝜋)

=
∑︁

𝑟 ∈Ω𝐻𝑖 𝑗

1
2

=
|Ω𝐻𝑖 𝑗 |
2

This means that the expected value of the sum of dot products for ray samples uniformly
distributed over the hemisphere of the probe is half of the number of samples on the hemisphere.

4

Supplementary Material: Importance-Based Ray Strategies for Dynamic Diffuse Global Illumination I3D 2023

4.2 Deriving the Diffuse Radiance
The irradiance in equation 2 also follows the following relation where 𝐻𝑖 𝑗 defines the hemisphere
with normal ®𝑑𝑠𝑖 𝑗 :

𝑖𝑟𝑟𝑖 𝑗 ≈
2
|Ω𝐻𝑖 𝑗 |

∗
∑︁

𝑟 ∈Ω𝐻𝑖 𝑗

⟨𝑑𝑠𝑖 𝑗 , 𝑟 ⟩+ ∗ 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 (𝑟)

because 𝐸 [∑𝑟 ∈Ω𝑖
⟨𝑑𝑠𝑖 𝑗 , 𝑟 ⟩+] = |Ω

𝐻𝑖 𝑗 |
2 (Section 4.1). To get the final diffuse radiance 𝑟𝑑𝑖 𝑓 𝑓 , we multiply

irradiance with BRDF:

𝑟𝑑𝑖 𝑓 𝑓 =
𝜌

𝜋
∗ 𝜋 ∗ 𝑖𝑟𝑟𝑖 𝑗 = 𝜌 ∗ 𝑖𝑟𝑟𝑖 𝑗 (1)

Note that 𝑖𝑟𝑟𝑖 𝑗 does not compute irradiance exactly and is off by a factor of 𝜋 , as the irradiance
formula sample the hemisphere uniformly with probability 𝑝 (𝜔) = 1

2𝜋 .

4.3 Deriving the Mixture Probability Distribution for Ray Allocation
We reformulate balance heuristic by formulating a stochastic selection of sampling strategies
followed by sampling using a selected sampling strategy:

𝑤𝑠 (𝑥) =
𝑁𝑠𝑝𝑠 (𝑥)∑
𝑘 𝑁𝑘𝑝𝑘 (𝑥)

=

𝑁𝑠∑
𝑙 𝑁𝑙

𝑝𝑠 (𝑥)∑
𝑘

𝑁𝑘∑
𝑙 𝑁𝑙

𝑝𝑘 (𝑥)

=
𝑞𝑠𝑝𝑠 (𝑥)∑
𝑘 𝑞𝑘𝑝𝑘 (𝑥)

where 𝑞𝑥 =
𝑁𝑥∑
𝑙 𝑁𝑙

(2)

Plugging equation 2 back into MIS formulation, we have

𝐹 ≈ 𝐹 =

𝑆∑︁
𝑠=1

1
𝑁𝑠

𝑁𝑠∑︁
𝑖=1

𝑤𝑠 (𝑋𝑖)
𝑓 (𝑋𝑖)
𝑝𝑠 (𝑋𝑖)

=

𝑆∑︁
𝑠=1

1
𝑁𝑠

𝑁𝑠∑︁
𝑖=1

𝑞𝑠𝑝𝑠 (𝑋𝑖)∑
𝑘 𝑞𝑘𝑝𝑘 (𝑋𝑖)

𝑓 (𝑋𝑖)
𝑝𝑠 (𝑋𝑖)

=

𝑆∑︁
𝑠=1

1
𝑁𝑠

𝑁𝑠∑︁
𝑖=1

𝑞𝑠 𝑓 (𝑋𝑖)∑
𝑘 𝑞𝑘𝑝𝑘 (𝑋𝑖)

=

𝑆∑︁
𝑠=1

𝑞𝑠

𝑁𝑠

𝑁𝑠∑︁
𝑖=1

𝑓 (𝑋𝑖)∑
𝑘 𝑞𝑘𝑝𝑘 (𝑋𝑖)

=

𝑆∑︁
𝑠=1

1∑
𝑙 𝑁𝑙

𝑁𝑠∑︁
𝑖=1

𝑓 (𝑋𝑖)∑
𝑘 𝑞𝑘𝑝𝑘 (𝑋𝑖)

=
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑋𝑖)∑
𝑘 𝑞𝑘𝑝𝑘 (𝑋𝑖)

where 𝑁 =

𝑆∑︁
𝑙=1

𝑁𝑙

Hence, this shows that MIS combined with the balance heuristic samples scene changes with a
mixture probability density distribution over all sampling strategies.

5

I3D 2023 Z. Liu et al.

4.4 Proving Ideal Sampling Distribution Provides Exact Estimates of Scene Changes
Given the ideal ray sampling distribution based on measured scene changes in formula 3

𝑝𝑖 (𝑥) =
𝑓𝑖 (𝑥)∫

Ω𝑑𝑠
𝑖

𝑓𝑖 (𝑥)𝑑𝑥
(3)

, we show that it provides exact estimate of scene changes around a probe. Let 𝐹𝑖 be the Monte-Carlo
estimates of 𝐹𝑖 . Substituting equation 3 back into 𝐹𝑖 , we get

𝐹𝑖 =
1
𝑁

𝑁∑︁
𝑗=1

𝑓𝑖 (𝑥 𝑗)
𝑝𝑖 (𝑥 𝑗)

=
1
𝑁

𝑁∑︁
𝑗=1

𝑓𝑖 (𝑥 𝑗)
𝑓𝑖 (𝑥 𝑗)∫

Ω𝑑𝑠
𝑖
𝑓𝑖 (𝑥)𝑑𝑥

=
1
𝑁

𝑁∑︁
𝑗=1

∫
Ω𝑑𝑠
𝑖

𝑓𝑖 (𝑥)𝑑𝑥

=

∫
Ω𝑑𝑠
𝑖

𝑓𝑖 (𝑥)𝑑𝑥

= 𝐹𝑖

References
[1] David Blackman and Sebastiano Vigna. 2016. xoroshiro64. https://prng.di.unimi.it/xoroshiro64star.c
[2] Zina H. Cigolle, Sam Donow, Daniel Evangelakos, Michael Mara, Morgan McGuire, and Quirin Meyer. 2014. A Survey

of Efficient Representations for Independent Unit Vectors. Journal of Computer Graphics Techniques (JCGT) 3, 2 (17
April 2014), 1–30. http://jcgt.org/published/0003/02/01/

[3] Eric Heitz, Laurent Belcour, V. Ostromoukhov, David Coeurjolly, and Jean-Claude Iehl. 2019. A Low-Discrepancy
Sampler That Distributes Monte Carlo Errors as a Blue Noise in Screen Space. In ACM SIGGRAPH 2019 Talks (Los
Angeles, California) (SIGGRAPH ’19). Association for Computing Machinery, New York, NY, USA, Article 68, 2 pages.
https://doi.org/10.1145/3306307.3328191

[4] George Marsaglia. 2003. Xorshift RNGs. Journal of Statistical Software 8, 14 (2003), 1–6. https://doi.org/10.18637/jss.
v008.i14

[5] Nathan Reed. 2013. Quick And Easy GPU Random Numbers In D3D11. https://www.reedbeta.com/blog/quick-and-
easy-gpu-random-numbers-in-d3d11/

6

https://prng.di.unimi.it/xoroshiro64star.c
http://jcgt.org/published/0003/02/01/
https://doi.org/10.1145/3306307.3328191
https://doi.org/10.18637/jss.v008.i14
https://doi.org/10.18637/jss.v008.i14
https://www.reedbeta.com/blog/quick-and-easy-gpu-random-numbers-in-d3d11/
https://www.reedbeta.com/blog/quick-and-easy-gpu-random-numbers-in-d3d11/

	Abstract
	1 Algorithms
	1.1 Random Ray Orientation
	1.2 Probe State Updates
	1.3 Irradiance and Visibility Integration

	2 Implementation
	2.1 Uniform Rays

	3 Cost Evaluation
	4 Proofs
	4.1 Deriving the Expectation of Sum of Dot Products over the Hemisphere
	4.2 Deriving the Diffuse Radiance
	4.3 Deriving the Mixture Probability Distribution for Ray Allocation
	4.4 Proving Ideal Sampling Distribution Provides Exact Estimates of Scene Changes

	References

